Partiel 2021: Physique Atomique et Moléculaire

mercredi 10 novembre 2021

-- TOUT DOCUMENT ET OBJET CONNECTÉ INTERDIT --

1. Question de cours

- a. Rappeler l'expression du moment magnétique orbitalaire $\vec{\mu}_l$, fonction du moment cinétique \vec{l} . Expliciter la valeur du magnéton de Bohr, fonction de la charge électronique q_e , de la constante de Planck réduite \hbar et de la masse électronique m_e . Ce moment orbitalaire interagit en présence d'un champ magnétique \vec{B} externe ; définir l'énergie associée.
- b. Définir les notions des densités de probabilité radiale et angulaire.

2. Autour des corrections de structure fine ...

- a. Décrire succinctement l'origine des termes de corrections de structure fine. Deux d'entre eux s'expriment par $W_{mv}=-\frac{\vec{p}^4}{8m_e^3c^2}$ et $W_{SO}=\frac{e^2}{2m_e^2c^2}\frac{1}{r^3}\vec{l}.\vec{s}$, avec $e^2=|q_e|^2/4\pi\varepsilon_0$ et ε_0 la permittivité du vide.
- b. A quel ordre du développement limité doit-on se placer pour extraire le terme W_{mv} ? Calculer le terme $\Delta E_{mv}^{(1)}$ associé à W_{mv} et l'exprimer en fonction de $|E_n| = m_e e^4/2\hbar^2 n^2$, α constante de structure fine ainsi que de n et l, respectivement nombres quantique principal et azimutal. On rappelle un certain nombre de valeurs moyennes possiblement utiles : $\langle \frac{1}{r} \rangle_{nlm} = \frac{1}{a_0 n^2}$, $\langle \frac{1}{r^2} \rangle_{nlm} = \frac{1}{a_0^2 n^3 (l+1/2)}$ et $\langle \frac{1}{r^3} \rangle_{nlm} = \frac{1}{a_0^2 n^3 l(l+1/2)(l+1)}$, avec a_0 le rayon de Bohr de l'atome d'Hydrogène.
- c. On s'intéresse dorénavant au terme W_{SO} et à la correction énergétique $\Delta E_{SO}^{(1)}$ associée ; calculer cette dernière en distinguant bien les cas $\Delta E_{SO}^{(1)+}$ pour $j=l+\frac{1}{2}$ de ceux $\Delta E_{SO}^{(1)-}$ pour $j=l-\frac{1}{2}$, j étant le nombre quantique associé à la mesure du carré du moment cinétique global. Elles seront à exprimer avec les mêmes paramètres que pour $\Delta E_{mv}^{(1)}$. On rappelle les actions suivantes des opérateurs : $j^2 \mid \Psi > = j(j+1)\hbar^2 \mid \Psi > ;$ $s^2 \mid \Psi > = s(s+1)\hbar^2 \mid \Psi > et$ $l^2 \mid \Psi > = l(l+1)\hbar^2 \mid \Psi > .$
- d. Calculer finalement les variations au niveau E_n de la somme des perturbations $W_{mv} + W_{SO}$, en fonction de $|E_n|$, α , n et j.

3. Hamiltonien Spin-Orbite

Nous allons étudier les états associés à la configuration excitée (3d) d'un atome hydrogénoïde de numéro atomique Z. Dans ce qui suit, nous ne prendrons en compte que les termes H_0 (Hamiltonien non perturbé) et W_{so} au sens défini plus haut, en posant $\xi_n(r)$ le préfacteur devant $\vec{l}.\vec{s}$.

- a. Ecrire l'expression de H_0 décrivant le mouvement de l'électron dans le champ coulombien du noyau de charge Ze. Sur quel(s) nombre(s) quantique(s) agit l'opérateur H_0 ?
- b. Donner l'énergie associée à la configuration 3d. Quelle est la dégénérescence du niveau d'énergie dans le cas faiblement relativiste, *i.e.* si l'on considère le moment cinétique et de spin de l'électron ? Quelle est la base correspondante des vecteurs propres ?
- c. Ecrire l'expression de l'Hamiltonien H du système. Le terme $\xi_n(r)$ agit-il sur le spin de l'électron? Sur son moment cinétique orbital?
- d. Définir la signification physique du nombre quantique j, et exprimer W_{so} en fonction des opérateurs j^2 , l^2 et s^2 .
- e. Peut-on utiliser la base des vecteurs donnée en (b) ? Sont-ils vecteurs propres de W_{so} ? Quels nombres quantiques devrions-nous alors utiliser pour décrire les états d'un électron dans la configuration 3d si l'on tient compte de W_{so} ?
- f. Quelles peuvent être les valeurs possibles de *j* pour la configuration 3*d* ? Donner alors la nouvelle base de vecteurs propres servant à décrire les états du système associés à cette configuration.
- g. Donner l'expression des éléments non-nuls de la matrice en fonction de la valeur moyenne $\langle \xi_n(r) \rangle$.
- h. Faire le diagramme des niveaux d'énergie des états associés à l'électron dans la configuration 3d en faisant apparaître les corrections en énergie liées à $W_{\rm so}$. Préciser le degré de dégénérescence des niveaux d'énergie précédents.